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Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address
the dilemma that the vaccine ¯eld faces: to improve vaccine e±cacy without compromising
safety. Harnessing the speci¯c e®ects of laser on biological systems, a number of novel concepts
have been proposed and proved in recent years to facilitate vaccination in a safer and more
e±cient way. The key advantage of using laser technology in vaccine delivery and adjuvantation
is that all processes are initiated by physical e®ects with no foreign chemicals administered into
the body. Here, we review the recent advances in using laser technology to facilitate vaccine
delivery and augment vaccine e±cacy as well as the underlying mechanisms.
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1. Introduction

Vaccine is the most cost-e®ective way to control
infectious diseases. To date, more than 70 vaccines
have been developed to reduce the morbidity and
mortality caused by approximately 30 pathogens.1

The most successful example is smallpox vaccine,
which completely eradicated smallpox in humans
and saved millions of lives. Despite the enormous
success of vaccines, there are still several obstacles
to overcome before vaccines can reach their full

potential. First, current vaccine manufacturing ca-
pacity is far from meeting the global needs, espe-
cially in response to a pandemic. Taking in°uenza
vaccine as an example, the global in°uenza vaccine
manufacturing capacity has increased to � 1 billion
doses per year, yet this manufacturing capacity can
only meet 1/10th of the global need (� 10 billion,
two doses for 70% of population). Second, e®ective
vaccines are still not available for some diseases,
including human immunode¯ciency virus (HIV)
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infection, tuberculosis and malaria. Third, the e±-
cacy of vaccines in the very young and old popula-
tions is much lower than that in their young adult
counterparts.2,3

Dose sparing would be an attractive strategy to
overcome the limited manufacturing capacity and
reduce the cost of vaccination in developing coun-
tries. Therefore new vaccine delivery strategies and
adjuvants that enable dose sparing have been
extensively studied in recent years. Besides dose
sparing, new delivery strategies and adjuvants are
an essential part of our e®ort to develop future
vaccines, in which the type, location and duration of
the immune responses should be accurately con-
trolled to ensure the e±cacy and safety.4,5 Moreover
these new delivery strategies and adjuvants can also
contribute to augment vaccine-induced immune
responses in very young and old populations.

Tens of new chemical adjuvants have been de-
veloped in last decades, but only a few of them en-
tered clinics, mostly due to the safety concern of
administrating foreign chemicals into healthy reci-
pients. Alternatively, the concept of laser-based
vaccine adjuvant has been proposed and studied in
recent years.6–9 The key advantage of this technol-
ogy over traditional chemical adjuvants is there
would be no any foreign chemicals administered
into our body, holding a great promise for future
clinical applications. Because the early practice of
laser adjuvant has been reviewed elsewhere,10–12 in
this, we will focus on the most recent advances in
this ¯eld. Additionally, we will also summarize the
progress on how laser technology facilitates the
delivery of vaccines without incurring any unwanted
side e®ects.

2. Facilitation of Cutaneous Delivery

of Vaccines by Laser Technology

Most of current vaccines are administered through
intramuscular injections, although the skin is
known to be a more potent site for vaccination,
because a large number of antigen presenting cells
reside in the skin. In sharp contrast, there are fewer
antigen presenting cells in the muscle in homeosta-
sis state. Skin also contains abundant lymphatic
and blood vessels, ensuring quick recruitment of
immune cells from the circulation into the skin and
fast migration of antigen-loaded antigen presenting
cells from the skin into lymph nodes. In accordance

to this, intradermal vaccination has been found to
induce more potent immune responses than that
induced by intramuscular injections of various
vaccines, including in°uenza, Rabies, etc.13

Yet, intradermal injection of vaccines is fre-
quently associated with severe local reactions. A
number of studies showed that injection of in°uenza
vaccines into skin by hypodermal needles caused
swelling and erythema lasting for several days.14,15

Additionally intradermal injection of Bacillus
Calmette–Gu�erin (BCG) vaccines, a vaccine used
worldwide to prevent childhood tuberculous men-
ingitis and miliary disease, induced severe local
reactions, leaving permanent scars on the skin.16

To resolve this issue, ablative fractional laser
(AFL) was used to fractionally deliver vaccines into
skin. AFL generates an array of microchannels in
epidermis. These laser-generated microchannels are
so small that they can be quickly healed in one or
two days by surrounding healthy tissues. Vaccines
can be delivered into these microchannels by
applying vaccine solution on the surface of laser-
treated skin or delivering vaccine powder accurately
into each channels using epidermal powder delivery
(EPD).17,18 Amazingly, fractional delivery of vac-
cine into these well separated microchannels greatly
reduced vaccine-induced skin reactions without
compromising vaccine e±cacy. For instance, frac-
tional delivery of BCG vaccine into laser-generated
microchannels resulted in faster and full recovery of
the skin, whereas intradermal injection of BCG
vaccine induced prolonged in°ammation and per-
manent scars.18

Besides BCG vaccine, this laser-mediated frac-
tional delivery can be also used for the transcuta-
neous delivery of novel anti-tumor or antiviral
vaccines. Harnessing microchannels generated by
the Precise Laser Epidermal System (P.L.E.A.S.E.),
Terhorst et al. transcutaneously delivered a XCR1þ
dendritic cell targeting anti-tumor vaccine, which
subsequently induced robust anti-tumor immune
responses in mice.19 The laser-mediated fractional
delivery is also bene¯cial for attenuated viral vec-
tors, especially for vaccinia virus-derived vectors.18

Vaccinia virus is traditionally delivered through
physically damaged epidermis (by scari¯cation) to
induce protective immunity against smallpox.
Although the majority of population is no longer
receiving this vaccine after eradication of smallpox,
vaccinia virus derived vectors are still the focus of
the vaccine research.20 Being a vector, it can induce
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very potent humoral and cellular immune responses
against the foreign gene it carries. The vaccinia
vectors have been used as carriers of HIV vaccines, in
which replication-competent Tiantan vaccinia virus
(rTV) carrying the gag, pol and gp140 genes in-
duced potent immune responses and provided high
level of protection in rhesus macaques.21 However,
to maximize its e±cacy, these vectors need to be
delivered by scari¯cation, leading to uncontrollable
skin damages. This may be the major reason why
this highly e®ective vaccine vector is rarely used. On
the other hand, fractional delivery of vaccinia vec-
tors by laser-mediated EPD induced highly con-
trollable skin damages, with more potent immune
responses.18

Taken together, this fractional delivery strategy
holds a great promise to improve intradermal skin
vaccination. It is worthwhile to point out that AFC
is not the only way to generate skin microchannels
for fractional intradermal vaccine delivery. Tech-
nologies, like microneedle arrays, can also accom-
plish this goal. Our study showed cutaneous
delivery of BCG vaccine as well as in°uenza vaccine
by microneedles resulted in improved skin condi-
tions as compared with intradermal injections.22

3. Increasing Blood Vessel Entry

of Malaria Vaccine by Laser
Illumination

Besides nonspeci¯c ablation of super¯cial skin to
generate microchannels, facilitation of vaccination
could also be achieved in a more speci¯c manner. In
1980s, researchers found illuminating skin with
green laser resulted in blood vessel leakage due to
the absorption of light energy by hemoglobin.23

Oxygenated hemoglobin and hemoglobin inside red
blood cells have a peak absorbance at 540 nm and
578 nm, respectively. Therefore upon laser illumi-
nation within these wavelengths, red blood cells
carrying hemoglobin absorb laser energy and release
heat to destroy capillaries in the skin. This treat-
ment is named \selective photothermolysis" and
widely used to treat vascular malformation in clinics
for decades. Recently this laser treatment has been
used to induce transient capillary leakage to in-
crease the concentration of blood biomakers in the
super¯cial layer of skin.24

Generally, entering circulation system is not re-
quired for most vaccines, but it is a crucial step for

one promising malaria vaccine, PfSPZ (Sanaria
Inc.), composed of radiation-attenuated spor-
ozoites.25 Malaria is a tropical disease caused by
Plasmodium falciparum (pf) parasite which infected
approximately 207 million people and cased 627,000
deaths in 2012 alone.26 Vaccines are the most cost-
e®ective strategy to control malarial epidemics,
but currently the most advanced malaria vaccine,
RTS, S, can only provide about 50% protection in
humans.27 Fortunately another promising malaria
vaccine candidate, named PfSPZ, has been found to
confer >80% protection in human volunteers.25

Radiation-attenuated sporozoites could infect
hepatocytes and synthesize early liver stage-speci¯c
antigens, which are important for inducing protec-
tive immunity against malaria infection. Conceiv-
ably, for this live-attenuated vaccine, stronger
immunity is correlated with a greater amount of
radiation-attenuated sporozoites reaching the liver.
Therefore intravenous injection is used in current
clinical trials to maximize the entry of sporozoites
into the blood vessel and then the liver. Although
intravenous injection is considered as the most ef-
¯cient route for delivering sporozoites to the liver, it
faces formidable technical hurdles in vaccination of
a large population, especially infants and young
children whose veins are hardly visible. Unfortu-
nately it is infants and young children who su®er
from malaria and need the vaccine most. On the
other hand, intradermal injection is a more clini-
cally acceptable route for vaccination and it also
mimics the natural infection by mosquito bites.
However, intradermal injection is far less e±cient
than intravenous route, probably because the entry
of sporozoites into blood vessels is highly restricted
in the dermis.28 To achieve a similar level of pro-
tection, a substantially higher number of spor-
ozoites is required for intradermal immunization
than that for intravenous injection. Simply in-
creasing the number of sporozoites per dose would
increase the cost signi¯cantly, which would be
problematic for a prophylactic vaccine needed by a
large population in underdeveloped countries.

To facilitate the entry of sporozoites into blood
vessels, the inoculation site was treated with a low
power laser (532nm) at 1 J/cm2. This treatment
selectively increased permeability of blood vessels
and signi¯cantly enhanced skin-to-liver delivery
of intradermal-injected sporozoites by 7-fold.29

A schematic diagram is shown in Fig. 1. More impor-
tantly, the laser-mediated enhancement of skin-to-liver

Laser facilitates vaccination

1630003-3

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



delivery resulted in much stronger sporozoite-speci¯c
immune responses than that induced by intradermal
vaccination alone and conferred protection against
malaria infection to a similar level as intravenous
immunization.29 If these early results can be con-
¯rmed in large animals and humans, laser-mediated
intradermal delivery of radiation-attenuated spor-
ozoites can serve as a more convenient and equally
e±cient alternative to intravenous vaccination.
Moreover, the laser illumination can be combined
with microneedle array to further simplify the vac-
cination in the future.

4. Laser Induced Micro-Sterile

In°ammation Array as Vaccine
Adjuvant

Another issue that hampers cutaneous vaccination
is lack of safe adjuvants. Adjuvants could augment
vaccine-induced immune responses, as well as

modulate the type of immune responses. For
example, Th1 immune responses are preferred to
control intracellular pathogens infection (virus,
intracellular bacteria, etc.), whereas Th2 immune
responses are critical in the defense against extra-
cellular pathogens (extracellular bacteria, etc.).
Unfortunately, our previous studies showed most
currently used or under developed adjuvants, in-
cluding aluminum hydroxide (Alum), oil-in-water
emulsion and toll-like receptor (TLR) agonists,
were not suitable for cutaneous vaccination, be-
cause these foreign chemicals often induce severe
and long lasting local reactions after being injected
into the skin.8–11

To address this, the concept of using inherent
\danger signals" to alert the immune system was
proposed. The inspiration came from an old adju-
vant, Alum. Alum has been used as a vaccine ad-
juvant since 1920s. Previous studies suggested that
the adjuvant e®ect of Alum was attributed to its
antigen deposit e®ect, meaning that Alum forms
hydrogel with vaccines in the injection site, releas-
ing antigens slowly and stimulating the immune
system continuously. However, a number of recent
studies challenged this traditional view. Hutchison
et al. demonstrated that removing the injection site
2 h after immunization did not result in compro-
mised immune responses, indicating that the anti-
gen deposit e®ect may not be important for the
adjuvant e®ect of Alum.30 Meanwhile, a number of
studies suggested the underlying mechanism owing
to toxicity of Alum31: Alum kills host cells, and
dead cells in turn release danger signals, including
uric acid, genomic DNAs, etc.31–33 These danger
signals are designated as damage-associated molec-
ular patterns (DAMPs). DAMPs could activate a
number of immune pathways, like in°ammasome
and nucleic acid sensing pathway, inducing sterile
in°ammation that could subsequently enhance the
adaptive immune responses.

These discoveries raise a question: why we need
foreign chemicals, like Alum, to induce cell deaths,
but not a much safer physics treatment that would
not leave any foreign chemicals in our body. To
prove this, we treated skin cells with high temper-
ature (65–95�C), and injected them back into the
skin with in°uenza vaccine. Interestingly we found
this treatment induced higher immune responses
compared to vaccine alone.34

These results revealed that skin tissue injury can
serve as a vaccine adjuvant. Nonablative fractional

Fig. 1. Delivery of malaria vaccine is facilitated by laser illu-
mination. (a) 532 nm laser illuminates the skin, penetrating
through skin blood capillary. (b) The laser energy is speci¯cally
absorbed by hemoglobin inside red blood cells, and converted
into heat, leading to a transient increase in permeability of
capillary vessels. (c) The radiation-attenuated sporozoites ma-
laria vaccine binds blood vessel walls and enters circulation
system easily through these permeabilized blood vessels.
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laser (NAFL) can controllably induce skin injury,
yet leading to a younger looking skin, a mature
technology used in the cosmetic industry for dec-
ades with excellent safety pro¯le.35 The NAFL
generates an array of micro-injured zones each as
small as 200 micrometers in diameter rather than
damage a single large area of skin as illustrated
in Fig. 2. These micro-injured zones induce tiny
sterile in°ammation zones well separated by heal-
thy skin and these tiny sterile in°ammation
zones can be resolved quickly, as short as 2 days,
ensuring its safety.34 Interestingly, this transient
in°ammation is su±cient to enhance the immune
responses induced by a number of vaccines, in-
cluding model vaccine ovalbumin, Hepatitis B vac-
cine, and in°uenza vaccine. Vaccination of in°uenza
vaccine with this micro-sterile in°ammation array
induced more potent protection against a viral
challenge.34

Our further investigation revealed that dsDNA
released by laser-damaged host cells is one of the

major mechanisms underlying NAFL-induced
adjuvanicity.22 As mentioned above, Alum adju-
vant induces the release of genomic dsDNAs from
dead cells, which in turn activate the DNA sensing
pathways.31,32 The dsDNA can be recognized by
cytosolic receptors, including cyclic GMP–AMP
synthase (cGAS), etc.36 Upon binding to the
dsDNA sensor, the activation signal is transduced
to the adaptor protein Stimulator of interferon
genes (STING), followed by activation of Type I
interferon transcription through a TBK1–IRF3-
mediated pathway or by activation of pro-in°am-
matory cytokines through NF�B pathway. Apart
from dsDNA, tissue injury could also induce
DAMPs like uric acid to activate in°ammasome,33 a
complex activates capase-1 to cleave prematured
interleukin-1 family (IL-1�, IL-18 and IL-33) into
their active forms.37 Moreover, TLR are also po-
tential targets of DAMPs. Upon ligand banding,
TLRs transduce signals through MyD88 or TRIF
protein to activate NF�B pathway or IRF pathway,

Fig. 2. Micro-sterile in°ammation array-based adjuvant. An NAFL induced micro-sterile in°ammation array is shown on the left,
and one of the micro-injured zones is enlarged on the right. (a) NAFL treatment kills skin cells which release dsDNA subsequently.
dsDNA is taken up by antigen presenting cells (b) and recognized by DNA receptors (c). Upon ligand binding, activation signals by
the receptors are transduced to STING, followed by activation of IRF3 and NF�B. (d) Type I interferons, proin°ammatory
cytokines and chemokines are produced to enhance the maturation and migration of antigen presenting cells. NAFL can be also
combined with plasmacytoid dendritic cell activator, Imiquimod. (e) NAFL treatment ¯rst induces expression of chemokines in the
skin. (f) These chemokines recruit plasmacytoid dendritic cells from circulation system into the skin. (g) The plasmacytoid dendritic
cells are subsequently activated by topically applied Imiquimod cream, and release a number of factors to enhance the maturation
and migration of antigen presenting cells, leading to enhanced adaptive immune responses.
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respectively.38 However, by using mice de¯cient
in one of these pathways, our results clearly
showed the dsDNA-sensing, but not TLRs- or
in°ammasome-sensing pathway participated in
augmentation of the immune responses by NAFL.22

The adjuvant e®ect of NAFL is summarized in
Fig. 2(a)–2(c).

The dsDNA released from dying host cells
appears to have a universal role to augment adap-
tive immune responses. Besides aforementioned
Alum adjuvant, sensing of dsDNA was also sug-
gested to be a key to the immunogenicity of DNA
vaccine. In support, B and T cell-mediated immune
responses induced by DNA vaccine were greatly
impaired in STING- or TBK1-de¯cient mice.39,40

Moreover, the transfer of tumor derived dsDNA and
subsequent activation of STING–IRF3 pathway
have been shown to su±ciently augment CD8þ T
cell responses against tumor cells.41 Alum adjuvant
not only induces release of dsDNA but also con-
tributes to transfect dsDNA into cells.32 However,
in most of the studies, including our study on NAFL
adjuvant, how dsDNA entered cytosol remains
unknown. Further studies in understanding this
process are essential to maximize the e®ect of
dsDNA-mediated immune augmentation as well as
the immunogenicity of DNA vaccine.

Apart from intradermal injections, NAFL could
be combined with other cutaneous vaccine delivery
technologies. One of most promising technology is
microneedles, especially biodegradable micro-
needles.42 As we mentioned previously, fractional
delivery of vaccines by biodegradable microneedle
array could greatly reduce the skin irritation induced
by cutaneous delivery of vaccines. Biodegradable
microneedle also o®ers additional advantages over
traditional vaccination strategies, such as painless,
sharp-hazard-free and self-applicable. However,
delivering a clinically relevant dose of vaccine by
these microneedles is always an issue, because poly-
merizationmatrixmust occupy themicroneedle shaft
to provide su±cient mechanic strength.43 Unfortu-
nately, this limitation could not be resolved simply
by increasing the length of the microneedles or
the density of needles, since long microneedles or in-
creased density caused for pain and severe irritation,
deviating from the ultimate goal of using micro-
needles.44 Our study revealed that NAFL adjuvant
might be able to address this dilemma. Pretreatment
of the inoculation site with NAFL augmented the
e±cacy of microneedle-delivered in°uenza vaccine by

at least 4-fold, holding a great potential to spare the
vaccine dose required for cutaneous vaccination.22 In
addition, NAFL broadens the protection spectrum of
microneedle-delivered in°uenza vaccines. Immuni-
zation of in°uenza vaccine (A/Puerto Rico/8/1934
H1N1 strain)-loaded microneedles, along with NAFL
treatment not only fully protected mice from the
challenge of the homologous virus strain, but also
resulted in a signi¯cantly higher survival rate when
challenged by genetically distant H1N1 strain (A/
California/7/2009 and A/New Caledonia/20/1999)
and heterosutypic H3N2 strain (A/Aichi/2/68).22

Cross-protective immunity is extremely important
for seasonal in°uenza vaccines because the mismatch
between immunizing viral strains and circulating
viral strains occurs frequently, reducing the e±cacy
of seasonal in°uenza vaccines substantially. Such a
mismatch took place recently in the °u season of
2009–2010, 2012–2013 and 2014–2015, diminishing
the e±cacy of vaccines, especially in elderly popula-
tion (> 65 years of age).45,46

NAFL can be used as a standalone vaccine
adjuvant alone or along with other chemical adju-
vants. As shown in Fig. 2(e)–2(g), the base of the
combination is NAFL-induced micro-sterile in°am-
mation array could recruit a large number of anti-
gen presenting cells, especially plasmacytoid
dendritic cells, into the skin via releasing a number
of chemokines. Plasmacytoid dendritic cells have
been demonstrated to be pivotal in inducing
immune responses against in°uenza virus.47 In
homeostasis state, there are few plasmacytoid den-
dritic cells residing in the skin, but they are actively
recruited to the skin following NAFL treatment.34

An increased number of plasmacytoid dendritic cells
in the skin provides an opportunity to activate these
important cells locally by topical application of
immune stimulators, rather than intradermal in-
jection of them, which would induce severe local
reactions and systemic side-e®ects. For instance, the
Imiquimod cream (Aldarar),48 is clinically used as
a topical treatment for genital/perianal warts, su-
per¯cial basal cell carcinoma and actinic keratosis.49

It is a potent activator of plasmacytoid dendritic
cells, binding to TLR-7. When Imiquimod was
applied on NAFL treated area, it activated plas-
macytoid dendritic cells accumulated in the skin
and strengthened adaptive immune responses. This
combination lead to a 7-fold increase of antibody
titers over traditional in°uenza vaccination in
hemagglutination inhibition (HAI) assay, a gold
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standard to evaluate the e±cacy of in°uenza vac-
cination.34 The result indicates this immunization
strategy can o®er a signi¯cant dose sparing, which
may greatly reduce the cost of vaccines and speed
up the vaccination of whole population during a
pandemic. Besides dose sparing, this immunization
strategy may also help the elder population. Intra-
dermal or intramuscular injection of in°uenza vac-
cine only induced insu±cient immune responses
owing to the immunosenescence in elderly.3

Encouragingly, addition of NAFL/Imiquimod ad-
juvant system greatly reversed the immunosenes-
cence and conferred high level of protection against
lethal viral challenges in old mice.34

5. Conclusion

A great deal of progress has been made recently on
how vaccination can be facilitated by lights. A
number of new concepts emerged, such as fractional
delivery and micro-in°ammation array, greatly
bolstering our understanding of the nature of the
skin immune system. These concepts hold a great
promise to solve several key issues in today's
vaccine ¯eld, leading to a safer and more e±cient
vaccination. Because these concepts/strategies were
only tested in mouse and pig models, a more clini-
cally relevant model like monkeys and clinical trials
are urgently needed in the near future to fully
realize their potentials.
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